Attention-based Deep Multiple Instance Learning

Maximilian Ilse, Jakub Tomczak, Max Welling

AMLAB, University of Amsterdam

ICML 2018

Typical size of benchmark natural images: **up to 256x256**

Typical size of benchmark natural images: **up to 256x256**

Typical size of medical images:

~10,000x10,000

Typical size of benchmark natural images: **up to 256x256**

Typical size of medical images: ~10,000x10,000

How to process it?

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Data: billions of pixels, 10¹-10² scans, weak labels (for regions or a scan).

Goal: Find (local) objects (abnormal changes in tissue) in an image.

Data: billions of pixels, 10¹-10² scans, weak labels (for regions or a scan).

Solution: Use local information in the image and look for Regions of Interest.

Ricci-Vitiani, L., et al. "Identification and expansion of human colon-cancer-initiating cells." Nature 445.7123 (2007): 111.

One image - one label $\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$

One image - one label $\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$

Many images - one label $X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$ $Y \in \{0, 1\}$

One image - one label $\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0,1\}$

Many images - one label $X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$ $Y \in \{0, 1\}$

Individual labels: $\{y_1, \ldots, y_K\}$ are unknown.

One image - one label $\mathbf{x} \in \mathbb{R}^D, \quad y \in \{0, 1\}$

Many images - one label $X = \{\mathbf{x}_1, \dots, \mathbf{x}_K\},$ $Y \in \{0, 1\}$

Individual labels: $\{y_1, \ldots, y_K\}$ are unknown.

Assumptions about the label *Y*:

$$Y = \begin{cases} 0, & \text{iff } \sum_{k} y_k = 0, \\ 1, & \text{otherwise.} \end{cases}$$

Many images - one label $X = {\mathbf{x}_1, \dots, \mathbf{x}_K},$ $Y \in {0, 1}$

Individual labels: $\{y_1, \ldots, y_K\}$ are unknown.

Assumptions about the label *Y*:

$$Y = \begin{cases} 0, & \text{iff } \sum_{k} y_k = 0, \\ 1, & \text{otherwise.} \end{cases}$$

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^Y \left(1 - \theta(X)\right)^{1-Y}$$

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} \left(1 - \theta(X)\right)^{1 - Y}$$
Must be permutation-invariant!

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^{Y} \left(1 - \theta(X)\right)^{1 - Y}$$
Must be permutation-invariant!

How?

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^Y \left(1 - \theta(X)\right)^{1-Y}$$

Theorem (Zaheer et al., 2017)

A scoring function for a set of instances $X, S(X) \in \mathbb{R}$, is a symmetric function (i.e., permutation invariant to the elements in X), if and only if it can be decomposed in the following form:

$$S(X) = g(\sum_{x \in X} f(x))$$

where f and g are suitable transformations.

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^Y \left(1 - \theta(X)\right)^{1-Y}$$

Theorem (Qi et al., 2017) For any $\varepsilon > 0$, a Hausdorff continuous symmetric function $S(X) \in \mathbb{R}$ can be arbitrarily approximated by a function in the form $g(\max_{x \in X} f(x))$, where max is the element-wise vector maximum operator and f and g are continuous functions, that is:

 $|S(X) - g(\max_{x \in X} f(x))| < \varepsilon.$

A MIL classifier as a probabilistic model:

$$p(Y|X) = \theta(X)^Y \left(1 - \theta(X)\right)^{1-Y}$$

The theorems say that we can model a **permutation-invariant** $\theta(X)$ by composing:

- a transformation *f* of individual instances,
- a permutation-invariant function σ , e.g., sum, mean or max (MIL pooling),
- a transformation of combined instances using a function g:

$$\theta(X) = g(\sigma(f(x_1), \dots, f(x_K)))$$

We model both transformations f and g using **neural networks**.

We model both transformations f and g using **neural networks**.

Two approaches:

- embedded-based
- instance-based -

...

We model both transformations f and g using **neural networks**.

Two approaches:

- embedded-based
- instance-based

MIL pooling:

- mean,
- max,
- other (e.g., Noisy-Or).

Issues:

- Embedded-based approach lacks interpretability.
- Instance-based approach

propagates error.

- max and mean are non-learnable.

Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:

$$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k,$$

where:

$$a_{k} = \frac{\exp\{\mathbf{w}_{k}^{\top} \tanh\left(\mathbf{V}\mathbf{h}_{k}^{\top}\right)\}}{\sum_{j=1}^{K} \exp\{\mathbf{w}_{j}^{\top} \tanh\left(\mathbf{V}\mathbf{h}_{j}^{\top}\right)\}},$$

Multiple Instance Learning: Attention-based approach

We propose to use the attention mechanism as MIL pooling:

$$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k,$$

Multiple Instance Learning: Attention-based approach

The attention mechanism as **MIL pooling**:

- MIL operator is **trainable**;
- attention weights could be interpreted (key instances).

Embedded-based approach is interpretable and fully trainable.

Y = 0

 $a_1 = 0.08884$ $a_2 = 0.09065$ $a_3 = 0.11254$ $a_4 = 0.07189$ $a_5 = 0.05136$ $a_6 = 0.03091$ $a_7 = 0.07404$

 $a_8 = 0.07412$ $a_9 = 0.16541$ $a_{10} = 0.02777$ $a_{11} = 0.11683$ $a_{12} = 0.04244$ $a_{13} = 0.0532$

Experiments: Breast Cancer

Method	ACCURACY	PRECISION	RECALL	F-score	AUC
Instance+max Instance+mean	$\substack{0.614 \pm 0.020\\ 0.672 \pm 0.026}$	$\substack{0.585 \pm 0.03 \\ 0.672 \pm 0.034}$	$\substack{0.477 \pm 0.087 \\ 0.515 \pm 0.056}$	$\substack{0.506 \pm 0.054 \\ 0.577 \pm 0.049}$	$0.612 {\pm} 0.026$ $0.719 {\pm} 0.019$
Embedding+max	0.607±0.015	0.558±0.013	$0.546 {\pm} 0.070$	$0.543 {\pm} 0.042$	0.650±0.013
Embedding+mean	0.741 ±0.023	0.741 ±0.023	$0.654 {\pm} 0.054$	$0.689 {\pm} 0.034$	0.796 ±0.012
Attention	0.745±0.018	0.718±0.021	0.715 ±0.046	0.712 ±0.025	0.775±0.016
Gated-Attention	0.755±0.016	0.728 ±0.016	0.731 ±0.042	0.725 ±0.023	0.799 ±0.020

Method	ACCURACY	PRECISION	RECALL	F-score	AUC
Instance+max Instance+mean	$\begin{array}{c} 0.842 \pm 0.021 \\ 0.772 \pm 0.012 \end{array}$	$\begin{array}{c} 0.866 \pm 0.017 \\ 0.821 \pm 0.011 \end{array}$	$\begin{array}{c} 0.816 \pm 0.031 \\ 0.710 \pm 0.031 \end{array}$	$\begin{array}{c} 0.839 \pm 0.023 \\ 0.759 \pm 0.017 \end{array}$	$\begin{array}{c} 0.914 \pm 0.010 \\ 0.866 \pm 0.008 \end{array}$
Embedding+max Embedding+mean	$\begin{array}{c} 0.824 \pm 0.015 \\ 0.860 \pm 0.014 \end{array}$	$\begin{array}{c} 0.884 \pm 0.014 \\ 0.911 \pm 0.011 \end{array}$	$\begin{array}{c} 0.753 \pm 0.020 \\ 0.804 \pm 0.027 \end{array}$	$\begin{array}{c} 0.813 \pm 0.017 \\ 0.853 \pm 0.016 \end{array}$	$\begin{array}{c} 0.918 \pm 0.010 \\ 0.940 \pm 0.010 \end{array}$
Attention Gated-Attention	$\begin{array}{c} \textbf{0.904} \pm 0.011 \\ \textbf{0.898} \pm 0.020 \end{array}$	$\begin{array}{c} \textbf{0.953} \pm 0.014 \\ \textbf{0.944} \pm 0.016 \end{array}$	$\begin{array}{c} \textbf{0.855} \pm 0.017 \\ \textbf{0.851} \pm 0.035 \end{array}$	$\begin{array}{c} \textbf{0.901} \pm 0.011 \\ \textbf{0.893} \pm 0.022 \end{array}$	$\begin{array}{c} \textbf{0.968} \pm 0.009 \\ \textbf{0.968} \pm 0.010 \end{array}$

Figure 10. Colon cancer example 1: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Figure 11. Colon cancer example 2: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Figure 12. Colon cancer example 3: (a) H&E stained histopathology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Attention heatmap: Every patch from (b) multiplied by its attention weight. (e) Instance+max heatmap: Every patch from (b) multiplied by its score from the Instance+max model. We rescaled the attention weights and instance scores using $a'_k = a_k - \min(\mathbf{a})/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

Deep MIL : a flexible approach to cope with large images.	

Deep MIL : a flexible	Attention mechanism:
approach to cope with	interpretable and learnable
large images.	MIL pooling.

Deep MIL: a flexible approach to cope with large images. Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Next step: taking into account spatial dependencies (non i.i.d. instances).

Deep MIL: a flexible approach to cope with large images. Attention mechanism: interpretable and learnable MIL pooling.

Next step: Application to whole-slide classification.

Next step: taking into account spatial dependencies (non i.i.d. instances).

Code on github:

https://github.com/AMLab-Amsterdam/AttentionDeepMIL

Contact:

ilse.maximilian@gmail.com jakubmkt@gmail.com

The research conducted by Maximilian IIse was funded by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Grant DLMedla: Deep Learning for Medical Image Analysis).

Marie Skłodowska-Curie Actions

The research conducted by Jakub M. Tomczak was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, "Deep learning and Bayesian inference for medical imaging").